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SUMMARY

In the analysis of a quantal dose-response experiment with grouped data, the most commonly used
parametric procedure is logistic regression, commonly referred to as ‘logit analysis’. The adequacy of the fit
by the logistic regression curve is tested using the chi-square lack-of-fit test. If the lack-of-fit test is not
significant, then the logistic model is assumed to be adequate and estimation of effective doses and
confidence intervals on the effective doses can be made. When the tolerance distribution of the
dose-response data is not known and cannot be assumed by the user, one can use non-parametric methods,
such as kernel regression or local linear regression, to estimate the dose-response curve, effective doses and
confidence intervals. This research proposes another alternative based on semi-parametric regression to
analysing quantal dose-response data called model-robust quantal regression (MRQR). MRQR linearly
combines the parametric and non-parametric predictions with the use of a mixing parameter. MRQR uses
logistic regression as the parametric portion of the model and local linear regression as the non-parametric
portion of the model. Our research has shown that the MRQR procedure can improve the fit of the
dose-response curve by producing narrower confidence intervals for predictions while providing improved
precision of estimates of the effective doses with respect to either logistic or local linear regression results.
Copyright © 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Indirect quantal biological assays are used for the estimation of the potency of a substance by
means of a quantal response variable. In indirect quantal assays, one concern is with the
estimation of the distribution of the tolerance (see Finney?) of the subjects to a particular drug or
chemical being studied, where tolerance is defined as the dose just sufficient to elicit a response
from the subject.

In an indirect quantal assay, the response is a Bernoulli random variable with parameter P;, the
probability that a subject will respond to dose x;. Suppose that an increasing sequence of doses x 1,
X,, ---,Xq 18 given to n; subjects and that r; subjects respond. Then, p; = r;/n;, the sample
proportion responding at the ith dose, estimates the true probability, P; for i = 1,2, ... ,d.
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The probabilities of response can be modelled parametrically! as P; = F(f, + f1x;) where
F is the tolerance cumulative distribution function. The most commonly used parametric
procedures are probit analysis, which uses the standard normal CDF, and logit analysis,
which uses the standard logistic CDF. This paper will emphasize the use of logistic regression
analysis, but the set-up will be such that any general form of F may be used. See Morgan?
for other parametric models. The procedure for estimating the coefficients, o and f, is
the method of maximum likelihood, see, for example, Finney,! Govindarajulu,® Goedhart* or
Morgan,? yielding the estimated equation of P; = F(x; ) where x; = (1 x;) and B = (B, B,).
When the user is satisfied with the chosen model, the primary concern then shifts to the
estimation of effective doses. The effective dose, denoted by ED,(,, is the dose where
100 per cent of the subjects in the population show a response. The most commonly
used value of « is 0-5. Extreme dose levels, such as the EDy;, ED;, and the EDg,, may be
regarded as percentiles of interest for many biological problems. The parametric confidence
interval on effective dose is typically computed using Fieller’s theorem.!+> Other methods that can
be used for confidence intervals on effective dose are the delta method* and the likelihood-ratio
interval.®

It may happen that neither the logit nor the probit models provide an adequate fit to the data.
In such a case, the researcher may try other parametric models that have been suggested for use in
quantal bioassays (Morgan?). However, due to the behaviour of the data, it may be difficult to
find an adequate parametric model. One possible solution then is to fit the data with a non-
parametric method such as kernal regression or local linear regression. These methods provide
a model-free estimate of the dose-response curve. One advantage of a non-parametric method
over a misspecified parametric model is a reduction in bias of fit. On the other hand, it is
well-known that non-parametric regression methods tend to place too much emphasis on
random behaviour in the data, resulting in estimates of fits that are imprecise, especially when
compared to the fits obtained by the parametric model.

One solution to this bias versus variance dilemma is to use an estimation technique that
combines the stability of fits from the parametric model with the reduction in bias provided by
non-parametric methods. This can be accomplished by taking a linear combination of the two fits
using a mixing parameter, 4. Such a semi-parametric approach has been used successfully by
several others, including Rahman et al.,° Burman and Chaudhuri,” Woolridge,® Robinson® and
Ullah and Vinod,'° for the continuous measurement variable case. The primary concern of
several of these papers®®10 is to use /4 to test for lack of fit of the parametric model, the
implication being that if lack of fit is found, the parametric model will be altered to another more
appropriate parametric model. We suggest a slightly different method now adapted to the
quantal assay situation as described above. Essentially, our method repairs an inadequate
parametric model by incorporating useful information from the non-parametric fit by taking the
proper linear combination of these two fits. The proposed method will be called model-robust
quantal regression (MRQR) because it ‘robustifies’ the quantal parametric model by adjusting the
parametric predictions with non-parametric predictions through a mixing parameter.

The non-parametric method considered in this paper for estimating the dose-response rela-
tionship in the quantal response variable setting is local linear regression (LLR), a procedure first
introduced by Cleveland!! and later studied extensively by Fan!? and Fan and Gijbels!3, among
others. Another non-parametric method, kernel regression, has also been applied previously to
quantal bioassays by a number of authors including references 14 to 17. Work by Nottingham,!®
however, has demonstrated that kernel regression is inferior to LLR in the quantal bioassay
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Table I. An assay of deguelin (Martin2°)

Dose (log 10) n r
0-71 49 16
1-00 48 18
1-31 48 34
1-48 49 47
1-61 50 47
1-70 48 48

setting, a fact consistent with the superiority of LLR over kernel regression in other applications
(see, for example, Fan and Gijbels'®).

To illustrate these ideas, consider the data presented in Table I and plotted in Figure 1 from
Martin?° which is a six-dose quantal assay with 48-50 subjects at each dose. In this case, the
substance applied was deguelin, given to groups of Macrosiphoniella sanborni, the chrysanthe-
mum aphis. The logistic fit to this data yields a chi-square statistic of 13-:37 resulting in
a significance level of 0-009, indicating that the logistic model fit to this data is inadequate. The
poor fit of the logistic model suggests a non-parametric or semi-parametric procedure may be
more pertinent in fitting this data.

Figure 1 shows the logistic regression fit, a second parametric model fit, the Aranda—-Ordaz
model,? and the MRQR (based on a convex combination of the logistic and LLR) fit to the data
along with the raw data. The chi-square statistics for the Aranda—Ordaz model and MRQR fit are
6-49 and 4-54, respectively. The Aranda-Ordaz fit uses a three-parameter model, whereas the
MRQR uses 2:72 ‘parameters’ (model equivalent degrees of freedom, see Cleveland!!). Examining
Figure 1, it is quite clear that the MRQR fit is superior at four of the six doses to that of the
logistic fit as well as the Aranda-Ordaz model. Logistic regression results in an estimate of the
EDs, of 0-95 with a 95 per cent fiducial interval of (0-60, 1-16), considerably different and less
precise from the estimate of 1:07 obtained by MRQR with interval estimate of (0-94, 1-16). This
example is interesting in that is appears in Morgan? to motivate the use of other more
complicated models, such as the Aranda—-Ordaz, than the logistic for fitting quantal data. Yet,
MRQR allows an improved fit using fewer parameters and without requiring knowledge of
a more complicated model.

Details of the MRQR technique will be presented in Section 3, after a brief presentation in
Section 2 of LLR applied to quantal regression. Section 4 presents the bias, variance and mean
squared error properties of the proposed MRQR method, and Sections 5 and 6 present numerical
and simulation results.

2. LOCAL LINEAR REGRESSION APPLIED TO QUANTAL BIOASSAYS

In LLR, the estimated response is obtained at each dose x = x; by fitting a simple linear
regression line at x; using the method of weighted least squares (WLS). The weights,
h¥, K%, ..., K%, obtained using kernel regression, are given by

d
ko_ xi_xj' xi—Xj
e (57 5 1 05)
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Figure 1. Logistic regression, Aranda-Ordaz model, and MRQR fits to the Martin?° data

where K( ) represents some appropriate kernel function and b is the bandwidth. The LLR
estimate at dose x; is given by

d d
PH® = o + Brixi = x{(X'HX) ! X'Hf p = )y x;(X'H{X) ™! thi'(jpj =) hiLjLR p; (1)

Jj=1 j=1
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where fo;, f1; are the WLS estimates of the intercept and slope, respectively, H¥ is the d x d
diagonal matrix of kernel weights (1%, ... h¥), X is the d x 2 model matrix of the form (x ... X}),
and p is the d x 1 vector of observed proportions. We note that P-'® can also be thought of as
a weighted average of the d sample proportions, with LLR weights of hi;"® = x{(X'H{X) ™! x; A};.
One can express the d x 1 vector of predictions, P}, at the d doses as P} = H''R p where the
ith row of H''® is expressed as x/(X'HYX) ! X'H%.

One form for the approximate variance of the LLR estimate, assuming that the bandwidth is
fixed, is

var (PMR) = x{ (X' HEX) ™! X HEVHEX (X'HEX) 1 x, 2)

where V is the d xd variance matrix of p where the ith diagonal element is P;(1 — P;)/n;,
i=1,...,d. Using the variance expression in (2), one can compute confidence intervals for the
LLR estimates of ED, via inverse regression. The model degrees of freedom associated with the
LLR fit is obtained following Cleveland!! as the trace of the LLR weight matrix, tr[H*"}].

Thus, there are at least two methods of analysis for quantal dose-response data: logistic
regression (the parametric procedure) and non-parametric regression. If the observed data
conform closely to the prescribed parametric model one would expect that the parametric
approach offers the best results. On the other hand, if the model is misspecified, then the model is
a poor descriptor of the data and the resulting logistic method is no longer optimal. In this case,
the estimates of parameters, mean response and effective doses will be biased with increased
variances. A non-parametric method such as local linear regression may perform better than
logistic analysis in the misspecified model case with reduced bias and perhaps reduced variance,
in the estimation of the response curve and of effective doses. The semi-parametric method
proposed here, model-robust quantal regression, utilizes the best of both of these procedures; the
lower variance of the parametric method and the lower bias of the non-parametric method under
model misspecification.

3. MODEL-ROBUST QUANTAL REGRESSION APPLIED TO QUANTAL BIOASSAYS

Model-robust regression (MRR), proposed by Einsporn,?! Einsporn and Birch??® and Mays and
Birch,?? attempts to improve predictions in the linear regression setting by combining parametric
and non-parametric predictions using a mixing parameter A. That is, the MRR predictions at the
n data points are obtained by $"*¥ (1) = A" + (1 — 2)§® where $™F is the nx 1 vector of
non-parametric predictions and §° is the n x 1 vector of parametric predictions. The unknown
parameter A must be estimated from the data. A similar approach has been taken by Olkin and
Spiegelman?* for density estimation. Speckman?® introduced ‘partial linear regression’ models in
which the non-parametric and parametric portions of the model are additive. Work by others®1°
addresses the test of lack of fit of the parametric portion of mixture models similar to the convex
combination of MRR. The mixing parameter in these papers is estimated by a closed-form
expression based on conditional least squares. We take a different approach in estimating 4, as
will be demonstrated in Section 7. Additionally, semi-parametric regression has been used in
conjunction with generalized linear models by Severini and Staniswalis?® and Hastie and
Tibshirani.?”

Model-robust regression can be extended to quantal bioassays in an attempt to combine the
parametric logistic regression analysis (or any other parametric fit) with non-parametric regres-
sion methods in fitting dose-response data. We will demonstrate that model-robust quantal
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regression (MRQR) provides an improved analysis of dose-response data by improved es-
timation of effective doses, and by providing narrower confidence bands for mean response, thus
resulting in narrower confidence intervals on the ED ¢, values. The model-robust method for
fitting quantal dose-response data is

PYROR — ) PNP L (1 — ) PP (3)

where P}R?R is the model-robust estimate of probability of response at dose x;, / is the mixing
parameter, PXF and P! represent the estimated probability that the subject will respond to dose x;
obtained through non-parametric and parametric methods, respectively. In this paper, LLR is the
non-parametric method and logistic regression is the parametric method. However, any paramet-
ric method and/or non-parametric method for quantal data may be used. The mixing parameter
A, defined so that 0 < 4 < 1, determines the degree to which the parametric predictions are
adjusted. The basic motivation of 1 is as follows. If the parametric fit is adequate, then use of the
non-parametric fit would increase the variance of the overall fit. A 4 ~ 0 would control for this.
On the other hand, if the parametric model has been misspecified, then the non-parametric fit
should be used to improve upon it. The amount of misspecification, and thus the amount of
correction needed from the non-parametric fit, is reflected in the size of .

Once the MRQR estimate has been computed, confidence bands on the MRQR curve can be
calculated. From these, the ED ¢, value of interest can be computed along with their confidence
intervals. The effective doses will be obtained iteratively by the method of inverse regression. That
is, iterate over the range of the doses until x, is found such that

PYROR () = PP () + (1= D) P () = . @

An approximate 95 per cent pointwise confidence interval for the true probability of response
at any dose x, can be obtained by PYR®R + 1.96 \/ {var (PYR®)} where one proposed expression
for var(PYR®) is

var (PYRR) — [Ah5" + (1 — 2)Bo] V[Ah® + (1 — 2)By] 5)

where V is defined in (2) and h}® is the dx 1 vector of non-parametric weights given by
hy® = (ho hos ... hys) where, in our application here, hy; is hgi® from (1), j = 1,2, ...,d. The
matrix B, in (5) is defined as B, = f(x5 ) xo (X' WX) ! X'W{ f(XB)> ! where { f(XB)> is a diag-
onal matrix with elements (f(xif) f (x5 B) ... f (X B)) where f() is the PDF associated with the
CDF, F. W is a d x d diagonal matrix of ‘true weights’, wy, ..., w,, where w; = n; 2 (x; B)*P; 0;
with P; = F(x} B) and Q; = 1 — P;. Then var(P¥*®) is found by replacing § by p, obtained by the
parametric method.

4. BIAS, VARIANCE AND MEAN SQUARED ERROR PROPERTIES

The fits obtained by the parametric, the non-parametric, and the MRQR procedures can be
compared by evaluating their bias, variance and mean squared error properties. In this section,
a brief summary of our results is given. Derivations of the bias, variance and MSE formulae can
be found in Nottingham and Birch.?®

For the parametric procedure, for example, logistic regression, it will be assumed that the true
probability of response at the d doses can be written as

P = G(x) = F(Xp) + H(x) (6)

Copyright © 2000 John Wiley & Sons, Ltd. Statist. Med. 19, 389-404 (2000)
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where P is the d x 1 vector of probabilities of response at doses xy, ..., X, G is the true cumulative
distribution function, a function of the d doses, F is the user’s assumed model, and H(x) denotes
the difference between the user’s postulated model and the true model. The function H(x)
represents the amount of model misspecification.

The bias, variance and mean squared error formulae that follow are all asymptotic in nature,
and, consequently, they are only approximate formulae for finite samples. Using the model given
in (6), the bias in estimation of d probabilities of response for the parametric procedure can be
expressed as

bias (P*) ~ [/ (XB)HX (X' WX) ' X' W(f(XB)> " — I] H(x).
The variance expression for the parametric prediction is given by
var(P*) = (f (X)) XV; X' (f(XB)> (7
where Vj is an expression for the variance of the coefficient vector B written as

var(B) = V; ~ (X' WX) ' X'W <§>X(X’WX)‘1 (®)

where

<G>:< Gx)(1 = G(x1)  Glx)(1 — Glxa)) >
Fxy P = F(xy B)  F(xa p)(1 — F(xa p))

F
is a diagonal matrix. A noteworthy observation is that if the user’s model is correct, that is, if
F = G, then H(x) =0 and {(G/F)> =1, which yields zero bias for the parametric procedure;
expression (8) reduces to var(B) = (X' WX) ™!, a well-known result, and the variance expression of
(7) is equivalent to the mean squared error expression for the parametric procedure.

For the non-parametric procedure, the mean squared error properties will be developed for the
model P = G(x) where G is any arbitrary CDF. The bias for the non-parametric prediction,
based on a fixed bandwidth, is given by bias (P?) = (H¥? — I)P. Similarly, the variance can be
expressed as var (PN?) = H¥?V,H™ where

Ve — var(p) — <G(x1)(1 —G(x1)  Gle)(l — G(xd))>_

ny ng

For the model-robust quantal regression procedure, the vector of estimated probabilities,
PMRQR is written as

PMRQR — ) PNP 4 (1 — )PP,
The variance expression is approximated by
var (PMRO®) — var [APN + (1 — )PP ] ~ [AH™? + (1 — /) B] V4 [AHN? + (1 — /) BT

where B = ( f(XB)> X(X'WX) ! X'W { f(XB)> " !. The bias for the MRQR procedure can be
expressed as

bias (PMR®) x J[H™ — 1P + (1 — 2) [<F(XB)> X(X'WX) "L X' W (f(XB)> ! — ITH(x)
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396 Q. J. NOTTINGHAM AND J. B. BIRCH

which turns out to be a linear combination of the biases of the parametric and non-parametric
procedures. Note that under the correctly specified parametric model H(x) = 0 and if 2 = 0,
as it should, then the mean squared error is comprised of primarily the parametric variance.
On the other hand, if the user’s postulated model has been grossly misspecified, H(x) # 0
and if 4 &~ 1 then the mean squared error will be made up of mainly the non-parametric fit to the
data. Adding the squared bias to the variance gives the desired mean-squared error (MSE)
formulae.

5. NUMERICAL COMPARISONS

The three procedures, logistic regression, LLR, and MRQR with LLR as the non-parametric
portion, will be evaluated by comparing the mean squared error (MSE) of fit at any dose value or
the average mean squared error across several dose values. As is readily seen from the bias and
variance formulae above, the mean squared errors are dependent on several factors including the
model matrix, X, which in turn reflects the number of doses, d, the dose values, x, ..., x;, and the
sample size at each doses, ny, ...,n,, the true CDF, G(x), and the CDF specified by choice of
the parametric method, F(x). These parameters must be established in order to evaluate at MSE
properties.

Additionally, the LLR procedure and MRQR require values for the bandwidth, and, for
MRQR, the value of A, the mixing parameter. Given the properties derived in the previous
section, the optimal values of the bandwidth (b) and mixing parameter (1), denoted by b, and Ao,
respectively, for the non-parametric and model-robust procedures, were computed by minimizing
the average mean squared error across the design points. In evaluating the MSE formulae, the
bandwidth and mixing parameters are fixed at their optimal values, following the approach taken
by Speckman.??

To enable G(x) to be expressed in the form (6) we need F(Xp). Assuming that G is the true
cumulative distribution function, the true responses, P, can be obtained at each of the dose levels.
Having the true responses at the d dose levels, the coefficient vector, B, is now obtained via the
method of maximum likelihood. Using this value of B, G(x) can be partitioned into the
components F(Xp) and H(x). For convenience, the domain Xx, of the function G will be scaled to
be between zero and one. The dose levels (or design points) will be evenly spaced to support the
entire curve.

The true CDF used in our evaluation of the procedures was chosen as G(x) = (1 — y)L(x; 0-5,
0-1) + y[0L(x; 0-25, 0-05) + (1 — o) L(x; 0-75, 0-05)], which, depending on the value of 7, is
a mixture of logistic cumulative distribution functions. The notation L(x; y, t) represents the
logistic CDF written as L(x; u, 1) = {1 + exp( — ((x — w)/r))} ', with p and 7 being the location
and scale parameters of the logistic distribution, respectively. The value of § will be 0-5 through-
out this paper. With the value of 6 = 0-5, G(x) is a mixture of a logistic CDF and a symmetric
bimodal CDF. The value of 7, which will denote the degree of model misspecification, will range
from zero to one. As the value of y increases to one, the degree of model-misspecification
increases.

Finney! suggests that the number of doses (or design points) be equally spaced and that the
same number of subjects (or replicates) be assigned to each dose. Thus, along with the range of
values indicated for 7, there will also be three dose values used (d = 3, 5 and 7) and three sets of
replicates at each dose level (n = 10, 20 and 50). The dose levels and replicates at each dose level
were chosen to represent typical quantal bioassay situations found in practice.!-2
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Table II. Theoretical integrated MSE efficiencies with respect to the logistic regression procedure
for d =5 doses using the optimal bandwidth and mixing parameters. Bold values indicate
simulated MSE efficiencies using bandwidth and mixing parameters selected using PRESS*

Y n=10 n=20 n=>50
LLR MRQR LLR MRQR LLR MRQR
0-0 0-8955 11111 0-7317 1-0000 0-5714 1-0000
0-8154 1-1042 0-8049 1-0000 0-5000 1-:0000
0-1 09677 1-1539 0-7500 1-0714 0-5714 1-0000
09672 1-1800 0-7895 1-1111 0-6500 1-:0000
02 11273 1-2653 0-8889 11852 0-7000 1-1667
1-1636 1-3333 0-8889 1-0667 0-6191 1-:0769
03 13542 1-4444 1-1290 1-4000 0-9444 1-4167
1-4444 1-5476 1-2000 1-4400 09444 1-4167
04 1-6429 16429 1-5000 1-6957 1-4000 1-7500
1-7727 1-7727 1-6800 1-8261 1-4000 19091
0-5 1-8750 1-8750 19565 2-0455 2-2500 2:4546
1-9756 1-9286 2-:0000 2-:0000 2-3333 2-5455
0-7 2-0000 2-0000 2-2857 2-2857 2-7059 2-7059
2-1064 2-1064 2-:3103 2-:3103 27059 27059
10 1:7284 1:7284 2-:0556 2-:0556 2-8182 2-8182
1-4554 1-4554 2-1346 2-1346 27647 27647

The measure by which the procedures will be compared is the approximate integrated MSE
(IMSE) statistic computed over the range of the data for the entire curve over 100 evenly spaced
doses. The IMSE for each procedure represents that procedure’s ability to fit the curve G(x) by
taking into account both average bias and average variance of the fitted responses over the entire
curve. Naturally, the smaller the IMSE the better a procedure is able to fit G(x).

To compare procedures across all model parameters, the integrated MSE efficiency (IMSE
efficiency) for any non-parametric or model-robust procedure (‘other’) with respect to the logistic
model is computed as IMSE — efficiency = IMSE(logistic)/ IMSE(other)

Although three values of d were examined (3, 5 and 7) in our study, due to the similarity of
results and for the sake of brevity, only the d = 5 results will be presented here. For a complete
accounting of all results, see Nottingham.!® Table II contains the IMSE efficiencies for each of the
(d =5,n =10, 20, 50) combinations for the values of y given above. The important observations
are:

1. the LLR procedure has efficiencies less than one for small values of y, where there is slight
misspecification, and efficiencies greater than one for larger values of y, representing greater
misspecification;

2. the MRQR procedure always has efficiencies greater than or equal to the LLR procedure,
and always has a mean squared error smaller than the logistic method, except when the
model is correct, where the efficiency is one.

Copyright © 2000 John Wiley & Sons, Ltd. Statist. Med. 19, 389-404 (2000)
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We note that the formulae used to compute the IMSEs rely on Taylor series expansions and are
asymptotic in nature and their appropriateness for finite sample size problems must be con-
sidered. This issue will be addressed in the next section. It is apparent from these results that
MRQR performs as anticipated, improving the fits over those obtained by either the parametric
or non-parametric method. These results, based on optimal fits, show the potential theoretical
benefits of the MRQR method.

6. SIMULATION RESULTS

For the first simulations obtained here, the LLR and MRQR methods use a fixed bandwidth and
mixing parameter set equal to the optimal values utilized to obtain the efficiencies in Table I1.
This simulation is designed, in part, to investigate the appropriateness and accuracy of the
theoretical MSE formulaes. Additionally, the procedures were also evaluated in their ability to
estimate other aspects typically desired in a quantal bioassay such as estimation of the probability
of response at a given dose and confidence intervals for these estimated responses. Estimates of
effective doses are also of interest along with confidence intervals on these estimates. Only the
d=15,n=20,y=0 and 05 results are shown here as they are representative of the results
obtained for all other combinations of d, n and ). Results based on data driven values of b and
A will be discussed in Section 7.

The mixed logistic model was simulated using SAS IML for each n (10, 20 and 50), d (3, 5 and 7)
and y (0, 0-1, 0-2, 0-3, 0-4, 0-5, 0-7 and 1-0) combination. To judge the accuracy of the theoretical
MSE formulae, the fitted response curves obtained for each of the three methods were compared
to the true curve, G(x), for each combination of parameters and each Monte Carlo repetition at
100 equally spaced doses (the support for G(x), is rescaled to be between 0 and 1) by computing
the sum of squared error (SSE) of fit given by SSE = Y129 (P, — P;)?/100. This process is repeated
500 times and the Monte Carlo average squared error (ASE) is obtained as the average SSE over
the 500 Monte Carlo repetitions. We view these ASE values as representing a measure of the
ability of a procedure to fit the true curve and the number of which the theoretical (and
asymptotic) IMSES of Sections 4 and 5 are attempting to represent. Though these ASEs values
will not be reproduced here, we learned through examination of them that the MSE formulae of
Section 5 are reasonable approximations to the true ASEs for d as small as 3. In fact, if d > 5 and
n = 10 the ASEs, obtained through simulation, and the IMSEs, obtained through the formulae of
Section 4, are in close agreement. At d = 5 and n = 10 or 20, the relative error between actual and
approximated results is usually less than 10 per cent, while at d = 5, n = 50, the maximum
observed relative error was less than 8 per cent, with most values agreeing to four decimal places.
The relative errors are even smaller at d = 7. Thus, it is clear that for d as small as 5 and n as small
as 10 the asymptotic formulae for the MSE from Section 4 provide accurate representations of the
true IMSEs.

Table III presents the effective dose estimation results, again for the d =5, n =20, y =0,
representing no model misspecification, and y = 0-5, representing moderate model misspecifica-
tion, respectively. The inverse estimation technique was used to obtain estimates of the ED, for
o equal to 0-2, 0-5 and 0-8 and corresponding 95 per cent confidence intervals for the non-
parametric and the MRQR methods. Fieller’s theorem was used to obtain 95 per cent confidence
(fiducial') intervals for the logistic method. The true ED,s are also presented in the tables for
comparison. At y =0 the logistic method gives superior results over the LLR procedure as
expected, with the most accurate estimates of effective doses and the closest observed coverage
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Table III. Effective dose estimation summary for the (d =5, n =20, y =0 and 0-5) combination using
optimal values of bandwidth and mixing parameter

Y Method o for ED,y,, True ED,y, Mean ED,,,, Mean width Observed coverage
probability (%)
0 MLE 02 0-3615 0-366 0161 90-8
0-5 0-5 0-502 0-118 92-8
0-8 0-6385 0-638 0161 916
LLR 02 0-3615 0-328 0-158 884
0-5 0-5 0-504 0-141 934
0-8 0-6385 0-676 0-149 84-0
MRQR 02 0-3615 0-366 0161 90-8
0-5 0-5 0-502 0-118 92-8
0-8 0-6385 0-638 0161 916
0-5 MLE 0-2 0-2730 0-3229 0-2072 88-8
05 05 0-5051 0-1450 928
0-8 0-7270 0-6873 0-2083 90-8
LLR 02 0-2730 0-2601 0-1301 932
0-5 0-5 0-5042 0-1344 942
0-8 0-7270 0-7479 0-1340 914
MRQR 02 0-2730 0-2663 0-1359 93-8
05 0-5 0-5044 0-1358 94-2
0-8 0-7270 0-7420 0-1300 922

proportions to the nominal 95 per cent. Note that the MRQR method results are identical
because the optimal value of the mixing parameter was 4 = 0. The coverage proportions for all of
the effective doses are near the nominal 95 per cent, with the EDs, having the highest coverage at
92.8 per cent. Aty = 0-5, the MRQR results are far superior to those of the logistic and slightly
better than the LLR method. The coverage proportions are still low for o = 0-2 and 0-8 for the
logistic procedure, but much higher for the MRQR method.

Other aspects of the analysis of quantal dose-response data of interest are the estimation of the
probability of response at an arbitrary dose and the properties of the precision of this estimate.
Table IV presents the simulated mean response based on 500 repetitions at the d = 5, n = 20
situation for y = 0 and 0-5, respectively. The true probability of response at each dose is given in
the tables as well. Also included are the average widths of the 95 per cent confidence intervals for
probability of response at each of the dose values along with the proportion of the 500 intervals
that contained the true probability of response, the observed coverage. The confidence interval for
the logistic method was obtained by straightforward application of maximum likelihood prin-
ciples as F(x, p) + 196 SE (F (x, p)), where SE(F (x, p)) = \/{fz (X6 B) xo (X' WX) ™ x,} with
Xo = (1 Xo).

The key comparisons are those between the logistic and MRQR methods. At y = 0, the model
is correctly specified so that one would expect the logistic method to give the most accurate
estimates of the probability of response. The Monte Carlo coverage proportions are equal for
both of these procedures with nearly equal average 95 per cent confidence interval widths. It is
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Table IV. Summary of mean response at the (d = 5, n =20, y = 0 and 0-5) combination for 500 Monte
Carlo simulations and the optimal values of the bandwidth and mixing parameter

Y Method Dose Mean True Mean Observed coverage
response response width probability (%)
0 MLE 0-1 0-019 0-018 0-065 860
03 0-116 0-119 0-227 892
05 0-495 0-500 0-372 95-0
0.7 0.881 0.881 0.232 91.2
09 0-980 0-982 0-068 866
LLR 01 0-020 0-018 0-093 100-0
03 0-164 0-119 0-195 894
05 0-492 0-500 0-296 93-4
0-7 0-833 0-881 0-194 916
09 0-981 0-982 0-091 100-0
MRQR 01 0-019 0-018 0-065 860
03 0-116 0-119 0-227 892
05 0-495 0-500 0-372 95-0
0-7 0-881 0-881 0232 912
09 0-980 0-982 0-068 866
05 MLE 0-1 0-047 0-021 0-140 986
03 0-175 0-242 0-287 756
05 0-490 0-500 0-352 952
07 0-814 0-758 0-294 814
09 0-950 0-979 0-146 98-4
LLR 01 0-020 0-021 0-149 99-6
03 0-249 0-242 0-157 94-4
05 0-495 0-500 0-164 94-2
0-7 0-741 0-758 0-162 932
09 0974 0-979 0-157 99-2
MRQR 0-1 0-023 0-021 0-142 99.6
03 0-241 0-242 0-162 92-4
05 0-494 0-500 0-176 94-2
07 0-749 0-758 0-167 932
09 0972 0979 0-150 99-2

interesting to note that the 95 per cent nominal coverage probability is met only at the middle
dose for the methods, and all methods, including the logistic procedure, have coverage propor-
tions less than the nominal value for all other doses.

At y = 0-5, with moderate model misspecification, one would expect that the logistic method
would have problems. The logistic method rather severely underestimates the probability of
response at x = 0-3 and overestimates the probability at x = 0-7. This represents the bias problem
discussed in Section 2. The MRQR method, is remarkably accurate in estimating the probability
of response throughout the entire dose range. The coverage proportions for the MRQR method
are very close to the nominal values at the middle range of doses with average widths far smaller
than those obtained by the logistic method.
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7. DISCUSSION AND SUMMARY

The MRQR procedure shows promise as a method that can be used alongside the parametric
analysis of quantal dose-response data and as a tool for curve fitting and effective dose estimation
when the user’s logistic model is inadequate. The theoretical results indicate that the model-
robust procedure improves the integrated mean squared error with respect to the parametric
(logistic) and non-parametric (LLR or kernel) methods.

Based on our theoretical and simulation results, where only a small proportion of our
extensive simulation results has been presented here, the model-robust procedure offers improved
analysis of quantal dose-response data when the logistic model has been misspecified. Summariz-
ing the theoretical and simulation results, the following is a list of the more pertinent features of
MRQR:

1. With a small number of doses, such as d = 3, the MRQR procedure yields as small or
smaller average mean squared error than the other procedures, with the exception of the
logistic method when y = 0, for n = 10, 20 and 50 replicates at each dose level when using
the optimal bandwidth and mixing parameter.

2. Using the optimal bandwidth and mixing parameters, the MRQR procedure had higher
mean squared error efficiencies than the other procedures for the (d = 5, 7; n = 10, 20, 50)
combinations across almost all values of y. This implies that with the optimal values of the
bandwidth and mixing parameter, the MRQR procedure performs better than the logistic
and LLR procedures.

3. Using the optimal values of the bandwidth, MRQR mixes appropriately. That is, as the
degree of model-misspecification increases, the value of the optimal mixing parameter
increases as well, giving more weight to the non-parametric procedure.

4. Based on 500 Monte Carlo repetitions, the asymptotic theoretical properties of the bias,
variance and mean squared error formulae for the non-parametric and model-robust
procedures are valid, especially when d > 5.

5. Although the estimated median effective dose was approximately the same for all the
procedures presented, as the degree of model-misspecification increased, the model-robust
procedure estimated the extreme doses more accurately, and with coverage probabilities
closer to the nominal 95 per cent when using the optimal bandwidth and mixing parameter.

6. Using the optimal bandwidth and mixing parameter for the non-parametric and model-
robust procedures, respectively, the true response, P, is also more accurately estimated by
MRQR.

It is evident from the above summary that the model-robust procedure applied to quantal
dose-response data is capable of improving the fit obtained by the either the parametric and
non-parametric methods with the proper values of the bandwidth and mixing parameter.
Although there are several areas for future research with respect to the model-robust procedures,
the primary area is that of bandwidth and mixing parameter selection. Many techniques are
available for bandwidth selection in non-parametric regression.!® The cross-validation procedure
and several versions of penalized cross-validation procedures have been applied to model-robust
quantal regression with promising results. Current work by Mays and Birch?® and Ruppert et
al.*° are also appealing and are currently being evaluated by the authors.

In particular, a version of a generalized cross-validation procedure, termed PRESS*, has been
studied extensively for selecting the bandwidth in LLR. Here, the bandwidth b is found by
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minimizing

S wilps — PE (b))

PRESS* =
d — tr(H'R)

where w; = n;/p;(1 — p;), serving as the weight, is the reciprocal of the estimated variance of
response at each dose, PI'% (b) is the ‘minus-i” predicted proportion of subjects responding to the
ith dose x; for the current value of b with the ith observation removed, and tr(H"*?) is the trace of
the d xd LLR weight matrix H“™®, Since tr(H*'?) reflects the LLR fits’ ‘model degrees of
freedom’,’ it is seen that the denominator of PRESS* penalizes the weighted PRESS statistic (the
numerator of PRESS*) for choosing b too small.

Empirical studies?® show the PRESS* can be superior to other forms of penalized cross-
validation criteria. The mixing parameter for MRQR may be chosen in a similar manner. As can
be expected, use of b and A chosen by PRESS* results in some loss of MSE efficiency when
compared to using the optimal values. However, the general features stated above as 1 to 6 still
hold. Justification of this statement is readily apparent from Table II where the IMSE efficiencies
given in bold result from the average IMSE over 500 Monte Carlo runs where b and 4 are chosen
by the PRESS* method for each run. We note that the MRQR method is never less efficient that
logistic regression, even when the model is correct and can be much more efficient when the model
is misspecified. MRQR is also never less efficient than LLR, even when the model is badly
misspecified and can be much more efficient when the model is correct (see Nottingham and
Birch?® for more details).

In the Martin example, the bandwidth was chosen as 0-3 and the mixing parameter
as 095, as determined by PRESS*. The large value of the mixing parameter implies that
majority of the MRQR fit (approximately 95 per cent) be composed of the non-parametric
fit (LLR). This seems appropriate since the logistic regression model was so poor, resulting
in a highly significant goodness-of-fit statistic. Presumably, using the MRQR fit composed
of 95 per cent from the LLR fit greatly improves the bias in fits caused by the inadequate
logistic model, while the 5 per cent from the logistic model reduces the variance off its that would
be obtained had we used solely LLR to determine the fits. The authors have prepared a macro in
SAS IML to perform the analysis demonstrated by this example. It is available from the authors
upon request.

Work in non-parametric regression by Hastie and Loader,*' Fan'? and Cleveland and
Devlin3? have found that the local linear and local quadratic fits are most useful. Therefore,
another possibility for the non-parametric procedure is to use local quadratic regression in
conjunction with a parametric method. The local quadratic regression method may provide
a better fit in the tails of the data.

In addition, it seems feasible to fit a local logistic regression as well. This would entail fitting
a logistic regression at each dose, just as in local linear regression, where a linear regression model
is used at each dose. This can also be generalized so that any CDF can be used to fit the
dose-response curve locally. Thus, instead of using logistic regression as the parametric function
in MRQR, one can also use any parametric model, such as the Aranda-Ordaz, a finite mixture
logistic, or any generalized linear model using error distributions such as the Cauchy, Gompertz
and Weibull, to name a few. Using any generalized linear model would make the model-robust
procedure more applicable across a variety of fields. This issue is currently being addressed by the
authors. Other examples of current semi-parametric regression research include Severini and
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Staniswalis?® who use quasi-likelihood methods to fit semi-parametric models and Fan et al.*?
who use local polynomial regression for generalized linear models.

An additional area for future research includes quantifying A. It should be possible to construct
a ‘goodness-of-fit’ test of the user’s specified parametric model by using a test statistic based on A,
extending the work of Rahman et al.® and others*!! from the measurement variable case to the
quantal regression setting.
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